
AI-based Web
Application Firewall
Using P2P DMA between
NVIDIA GPU and DPU

 y Smart Devices Challenge Traditional CPUs

 y AI Enhances Web Security

 y Optimizing Performance with P2P DMA

2

CodiLime | AI-based Web Application Firewall

Executive Summary
This publication delves into the revolutionary shift in computer architecture driven by the rise of smart devices with

their own computational capabilities, reducing the central role traditionally held by the CPU. As technology advances,

devices like DPUs (data processing units) and GPUs (graphics processing units) are becoming more autonomous,

handling specific workloads more efficiently than general-purpose CPUs.

Key points covered in this ebook include:

1. Traditional vs. Modern Architectures: A comparison between the hierarchical,

CPU-centric architecture and the emerging democratic model where smart devices independently manage their

own tasks.

2. Leveraging AI for Security: An exploration of how AI models deployed on GPUs can enhance security in web

applications, bypassing the CPU to streamline data processing and improve performance.

3. Practical Applications and Future Potential: Examples of practical implementations, including a proof of concept

for a firewall application using DPUs and GPUs. Future possibilities for using P2P DMA in various fields, such as

network monitoring, media streaming, and content delivery, are

also discussed.

4. Solution Architecture and Improvements: A detailed description of the architecture used in the proof of concept,

highlighting the roles of DPUs, CPUs, and GPUs. Potential future improvements and a vision for developing a more

flexible and programmable framework for ML and DPU-based solutions are outlined.

This publication provides valuable insights for technology professionals, emphasizing the shift towards smarter, more

autonomous hardware that enhances performance, security, and scalability in modern computing environments.

3

Table of contents
Introduction ...4

A Novel Approach ...5

Solution Architecture ..7

Possible Improvements to the Solution ..9

Advanced Traffic Preprocessing and Postprocessing ... 9

Creating Framework ... 9

Vision for the Future ...10

Conclusions ...10

About the Authors ...11

About CodiLime ..11

CodiLime | AI-based Web Application Firewall

4

Introduction

For most of computing history, the architecture of a computer remained fixed and largely unchallenged. At the core

of the computer, there was a CPU that manages computations, RAM for holding temporary data, a disk for storing

permanent files, and a GPU for performing parallel computations faster. Everything was designed in a very hierarchical

and autocratic manner - various devices performing their tasks were overseen and managed by the CPU. Now, however,

it is time to challenge these hitherto timeless concepts and introduce more democracy.

As technology continues to advance, all devices are becoming smarter. Nowadays, many hardware devices no longer

require a host CPU to manage them as they possess their own computational capabilities. The CPU is a circuit that is

very well suited to a certain type of task - a structural, sequential one - but doesn’t do as well with other workloads. It

is more beneficial for performance when running networking-related computations on a DPU and AI on a GPU. When

the CPU only exchanges data or synchronizes operations between different pieces of hardware that handle all of the

substantive work, it is faster to take it out of the equation altogether. Many cases, commonly seen throughout the

technological landscape, could benefit greatly from such a design.

CodiLime | AI-based Web Application Firewall

5

Let’s consider the following scenario: a simple HTTP

web application is deployed and we want to protect it

using a firewall. The application has a significant user

base and handles a lot of traffic. The popularity of the

application creates another problem - its database is a

valuable target for a cyber attack.

Given the recent advancements in machine learning

development, we aim to harness its power to enhance

security measures. Instead of relying on static firewall

rules or implementing algorithmic heuristics, let’s

employ a machine-learning model!

Artificial intelligence models require a lot of parallel

computing to be carried out. A graphics card is well

suited to this type of task. By deploying artificial

intelligence on a GPU, we can enable it to scrutinize

every packet and distinguish between benign and

hostile traffic. The classic approach to this would

consist of the following steps:

 y Read each packet from the NIC using the host CPU1

 y Route it to the model on the GPU

 y Wait for the computations on the graphics card

to be completed

 y According to the verdict from the GPU, either drop

it or forward it to the app

Fig. 1. The diagram shows the classic approach to

implementing a GPU-based firewall with a normal network

interface card.

1 Normally, the NIC first transfers the packet to the CPU RAM

and then the CPU application reads the packet data. This step

is skipped in our description in order to simplify the project

description.

A Novel Approach

CodiLime | AI-based Web Application Firewall

6

This requires several data transfers. First, we have to send the data from the NIC to the CPU, then to the GPU, then back

to the CPU. Each of these transfers takes time.

Bypassing the host CPU in this process can enhance security by isolating the host from potential malicious data, and

performance by eliminating unnecessary memory transfer and packet processing on the host. The general idea is to

use P2P DMA to transfer data directly from the NIC to the GPU and use the peripheral devices’ own computational

capabilities to manage the necessary control logic.

The NVIDIA BlueField-2 DPU has an ARM CPU of its own that is perfectly suited to this type of scenario. Because it

is closer to the network and designed to process network data, it is going to be faster than a general-purpose CPU.

Additionally, the NVIDIA graphics unit that we used can schedule work by itself using the Graph API, freeing the CPU

from the control workload relating to the GPU. Because we used a BlueField variant without an onboard GPU, the

system is more flexible and can be upgraded in subsets if necessary. It could also be modified to include multiple

GPUs.

Leveraging P2P DMA, selected packet data is sent directly from the DPU to the GPU, where an AI model decides

whether to drop or forward the packet, streamlining the DPU’s firewall functionality. This approach relieves the host CPU

of its workload entirely, enabling it to be used for other computing workloads.

The created solution stands as a proof of concept, demonstrating the possibilities that are unfolding in the era of smart

peripheral devices. As smart peripheral devices advance, offering substantial opportunities for acceleration, offloading,

and isolation from the main system, the critical significance traditionally assigned to the CPU may diminish. What could

be achieved using, for instance, a smart disk? Only time (and our future research) will tell.

CodiLime | AI-based Web Application Firewall

7

Solution Architecture

Fig. 2. The diagram shows the novel approach to

implementing a GPU-based firewall. The solution uses

a DPU for receiving traffic instead of a typical NIC.

The architecture can be split into three areas:

DPU, CPU, and GPU.

On the CPU, there are HTTP Server and the Initialization

app. The HTTP Server handles requests coming from

clients. The traffic coming to the server must first be

filtered to ensure the requests are secure.

The Initialization app controls the initialization process

for the GPU and DPU. This consists of several steps:

 y GPU memory initialization: The CPU configures

common buffers for the DPU and GPU. The DPU will

use these buffers to send extracted packet data to

the GPU. The GPU will use these buffers as input

(PyTorch tensors) to the machine learning model.

 y Web application firewall (WAF) model initialization:

The CPU prepares the model for receiving packet

data. The goal is to minimize the CPU workload as

much as possible. To achieve that, we used PyTorch

CUDA Graphs support, which allowed us to store

the PyTorch computation model in the CUDA Graph

structure. This allowed us to use CUDA Graphs tail

launch to schedule model computation directly from

the GPU and fully process packet data batches on

the GPU. Thanks to that, the CPU doesn’t need to

control the ML model execution.

Besides packet batch processing, the GPU side is

responsible for the WAF model execution. We used the

mobilebert-sql-injection-detect model to detect SQL

injection, but we don’t see major obstacles in using

different models. The main requirement is that the

model’s input should be able to be filled by the DPU via

memory operations.

CodiLime | AI-based Web Application Firewall

8

The DPU firewall app is responsible for network traffic processing – receiving packets, extracting the selected portion

of packet data, and writing it to the GPU memory via DMA. After the GPU WAF model execution, the firewall app either

drops the packet or forwards it to the host HTTP server. The DPU lets us extract the important parts of the packet data

(in our case, the HTTP header) before writing it to the GPU memory. This is the main advantage of using a DPU instead

of a regular network card supporting GPUDirect RDMA technology. Sending parts of the packet only, instead of the

whole packet, to the GPU reduces the PCI traffic between the DPU and GPU, improving performance

and latency.

Summing up, the typical packet flow is the following:

1. A packet arrives at the DPU firewall app.

2. The DPU extracts the HTTP request data

from the packet.

3. The extracted data is sent via a DMA write operation to the shared GPU memory buffer.

4. On arrival, the GPU runs the WAF model on the received data.

5. After the WAF model execution, the results are read by the DPU Firewall app via the DMA read operation.

6. Based on the results, the DPU decides whether to drop the packet or send it on to the host HTTP server.

Note that the CPU is idle during firewall traffic processing and can focus on HTTP request handling or other tasks.

CodiLime | AI-based Web Application Firewall

9

The main focus of the project was on preparing a

proof of concept that demonstrates the possibilities

of utilizing the DPU and GPU for traffic control.

There are a number of potential improvements to

the use case, and some of them are described in

the subsequent sections.

Advanced Traffic
Preprocessing and
Postprocessing

As stated in the description of the solution architecture,

DPUs, unlike regular NICs, can perform packet

preprocessing (in our case, HTTP header extraction)

before sending the data to the ML model, saving

bandwidth and reducing latency. This idea can be used

for other types of computation that can be executed

before and after model execution.

A more advanced example of this approach we came

up with but haven’t implemented was extending

the DPU application to process traffic streams

similarly; e.g. after recognizing an attack, we could

block the entire stream instead of operating on

individual packets, which would again greatly improve

performance. This could be achieved by incorporating

the DOCA Flow mechanism.

Creating a Framework

In our project, we chose a specific ML model and

integrated it with the rest of the application. However,

we see great potential in simplifying the creation of ML

and DPU-based solutions for arbitrary models.

There are multiple use cases that could utilize ML for

traffic processing. For example, in the case of network

traffic control, the solution could be used to detect and

block DDoS attacks. Another example, from a slightly

different field, could be monitoring network traffic

based on ML models and showing processed statistics.

These use cases require different models that may

require greatly different input data and would produce

results that should be interpreted and processed

differently. It would be beneficial to implement a

framework that could simplify the programmability of

such various solutions.

Possible Improvements
to the Solution

CodiLime | AI-based Web Application Firewall

10

Using P2P DMA to transmit data from the DPU

to the GPU and back is only one example of utilizing

this technology. This is a wide field with a lot

of potential in other areas as well.

Applications that rely on storage are another example

of how transferring large amounts of data bypassing

the CPU could improve the performance of the whole

solution. For instance, in an app that realizes content

delivery network functionality, the data can be sent

directly from the disk to the network interface card,

saving CPU cycles. The same could be said for various

solutions that have a storage component, such as a

media streaming service. The control logic surrounding

data transfers could be managed by the computational

capabilities of the smart devices themselves, and the

DMA could be realized independently of the rest

of the system.This kind of application would naturally

require a smart storage device that could initiate

and realize a DMA operation. Depending on the

computational power of the disk device, it might also

be possible to create a simple database that would run

on the disk itself and make itself available through the

network for direct access.

Vision for the Future

CodiLime | AI-based Web Application Firewall

A monitoring/data-gathering solution could be another

option for utilizing P2P DMA for the NIC and disk. The

network traffic could be mirrored directly to the storage

device, which would introduce performance gains. This

kind of solution could be used, for instance, to gather data

to train AI models for network monitoring and security.

Caching intermittent or final results of machine

learning computations could also leverage P2P DMA

between the GPU and disk. In a scenario where it is

likely that the same data will be processed multiple

times by the GPU and the output is sizable, this could

potentially be faster than just running the AI model

on the same data again. Additionally, by introducing

parallelism, the solution could run the next batch of

data on the GPU and fetch the cached results from the

disk at the same time, vastly increasing performance.

Conclusions
P2P DMA could improve the efficiency of many

applications by utilizing hardware more efficiently.

Because multiple processes happen simultaneously

on different devices, not only is the data transfer faster,

but it also introduces opportunities for parallelism,

further improving the overall performance.

11

About the Authors About CodiLime
Since 2011, CodiLime has been the engineering

partner of choice for semiconductor companies,

networking vendors, telecom services, and software

solution providers.

We’re home to 300 top-notch software developers,

network engineers, DevOps experts, and solution

architects. We appreciate long-term collaborations

above all, as well as our partners. Below are some

of the names that have already trusted us:

CodiLime aims to link network engineering talent

with business domain expertise – we focus on five

N.E.E.D.S. - Networks, Equipment, Environment, Data

and Security.

contact@codilime.com

Marcin Parafiniuk is a Software Engineer at CodiLime,

where he focuses on firmware and driver development for

SmartNICs. He also participates in the creation of next-

generation networking software and hardware, including

integration of SmartNICs with the Tungsten Fabric SDN

platform and implementation of hardware offloading for

5G infrastructure. He specializes in the Rust, C/C++, and P4

programming languages. Marcin earned a bachelor’s degree in

informatics at the University of Warsaw (Poland).

Marcin Parafiniuk
Software Engineer

Michal Niciejewski
Software Engineer

Michał is a Software Engineer at CodiLime, specializing in

network drivers and traffic offloading. He excels in the C and

C++ languages and has expanded his skills in Rust through

projects at CodiLime. His experience includes designing

and implementing network drivers and applications in

DPDK, integrating SmartNICs with Tungsten Fabric SDN,

and implementing packet processing offloading on GPUs.

Michał’s passion for operating systems and eagerness to

learn new technologies drive his contributions in the field.

Artur Jaworski
Senior Software
Engineer

Artur Jaworski is a Senior Software Engineer at CodiLime

with over ten years of experience in financial and networking

technologies. With languages like C/C++, Rust, Python and P4,

he has participated in the development of several solutions for

data plane applications, SDN controllers, 5G infrastructure and

performance measurement tool sets. As a technical leader in

the Acceleration and Offloading Business Unit, he manages the

group that extends competencies and sets the direction for

projects with acceleration and offloading technologies.

CodiLime | AI-based Web Application Firewall

